ETİBOR-48 SAFETY DATA SHEET

Date of initial Issue : March 2007
Revision No : 08
Date of Revision : January 2018

SECIION I. Identification of the Substance and the Company

1.1. Product identifier

Substance name: Disodium tetraborate pentahydrate
Trade name : ETİBOR-48 (Borax pentahydrate)
Chemical name/synonyms: Borax pentahydrate, disodium tetraborate pentahydrate, sodium tetraborate pentahydrate

Index \mathbf{N}°	$: 005-011-02-9$
CAS N	
EC N $^{\circ}$	$: 12179-04-3$
	$: 215-540-4$

REACH Registration number: 01-21 19490790-32-0002

1.2. Relevant identified uses of the substance and uses advised against

Relevant identified uses

The product is used in industrial manufacturing and formulation, among others in:

- Ceramics
- Detergent
- Borosilicate glass
- Insulation fibreglass

For area-specific use, see the exposure scenarios in the annex of this extended Safety Data Sheet (eSDS).
Uses advised against
Not applicable, there are no uses of Etibor-48 advised against.
1.3. Details of the supplier of the safety data sheet

Importer
Name : AB ETIPRODUCTS OY
Address : Piispanporti 5, 02240 Espoo/FINLAND
Phone No : + 358981944440
Fax No : + 358981944444
e-mail : sales@etiproducts.com
Manufacturer
Name : ETİ MADEN İŞLETMELERİ GENEL MÜDÜRLÜĞÜ
Address : Ayvalı Mah. Halil Sezai Erkut Cad. Afra Sok. No:1/A 06010 Keçiören/Ankara TÜRKİYE
Phone No : +90312 2942000
Fax No : +90 3122327184
1.4. Emergency phone number: +49 (0)6132-84463 (24-Hour-Number) GBK GmbH

SECTION 2. Hazard Identification

2.1. Classification of the substance

2.1.1. Classification According to Regulation EC N ${ }^{\circ} 1272 / 2008$ (CLP)

a. Harmonised classification provided in the $1^{\text {st }}$ ATP to CLP (Regulation EC N ${ }^{\circ} 790 / 2009$)

Repr. Cat. 1B; H360FD
Specific concentrations limits: Repr. 1B; H360FD: C $\geq 6.5 \%$
b. Self-classification based on the classification criteria provided in CLP

Eye irrit. Cat. 2; H319
Specific concentrations limits: $\mathrm{C} \geq 10.0 \% \mathrm{Xi} ; \mathrm{H} 319$
Precautionary Statement Prevention: P201; P202; P264, P280
Precautionary Statement Response : P308 + P313; P305+P351+P338; P337+P313
Precautionary Statement Storage : P405
Precautionary Statement Disposal : P501
2.1.3. Additional information

For Full text of Hazard Class/Statements and Precautionary Statements see SECTION 16.

2.2. Label elements

2.2.1. Label according to Regulation (EC) $\mathbf{N}^{\circ} 1272 / 2008$ (CLP)

Hazard pictograms:

Signal word : Danger

Hazard Statements : H360FD: May damage fertility or the unborn child.
: H319: Causes serious eye irritation.
Precautionary Statements:

P201	: Obtain special instruction before use
P202	: Do not handle until all safety precautions have been read and understood
P280	: Wear protective gloves/protective clothing/eye protection/face protection.
P305+P351+P338	: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if
	present and easy to do. Continue rinsing
P308+P313	: IF exposed or concerned: Get medical advice/attention
P405	: Store locked up.

2.2.2. According to REACH, Annex XVII

Restricted to professional users

2.2. Other hazards

Emergency overview

Etibor-48 is a white odourless, powder/granular substance that is not flammable, combustible, or explosive, and has low acute oral and dermal toxicity.

Potential health effects

Inhalation is the most significant route of exposure in occupational and other settings. Dermal exposure is not usually a concern because Etibor-48 is poorly absorbed through intact skin.

Inhalation

Occasional mild irritation effects to nose and throat may occur from inhalation of Etibor-48 dusts at levels higher than $10 \mathrm{mg} / \mathrm{m}^{3}$. Etibor-48

Eye contact

Etibor-48 is a serious eye irritant.

Skin contact

Etibor-48 does not cause irritation to intact skin

Ingestion

Products containing Etibor-48 are not intended for ingestion. Etibor-48 has low acute toxicity. Small amounts (e.g. a teaspoonful) swallowed accidentally are not likely to cause effects; swallowing amounts larger than that may cause gastrointestinal symptoms.

Reproductive/Developmental

Animal ingestion studies in several species, at high doses, indicate that borates cause reproductive and developmental effects [1]. A human study of occupational exposure to borate dust showed no adverse effect on reproduction. An epidemiological study and a peer reviewing report of the past epidemiological studies conducted in China didn't show any negative effect of boron on human fertility [2]. A study conducted in Turkey with boron exposed mine workers showed that mean blood concentrations of the high exposure group is ~ 6 times and ~ 9 times lower than those of the highest no effect level of boron in blood with regard to developmental and reprotoxic effects (respectively) in rats. With those findings, no unfavourable effects of boron exposure on reproductive indicators are observed in humans $[3,4]$.

Potential ecological effects

Large amounts of Etibor-48 can be harmful to plants and other species. Therefore releases to the environment should be minimised.

Signs and symptoms of exposure

Symptoms of accidental over-exposure to Etibor-48 have been associated with ingestion or absorption through large areas of damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling (see SECTION 11).

SECTION 3. Composition / Information on Inqredients

3.1. Substances

The product contains greater than 99.9 percent (\%) Etibor-48 (borax pentahydrate; $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} .5 \mathrm{H}_{2} \mathrm{O}$)

Identification Name	EC N $^{\circ}$	CAS N		REACH Registration Number
Borax pentahydrate (Sodium tetraborate pentahydrate, disodium tetraborate pentahydrate)	$215-540-4$	$12179-04-3$	$01-2119490790-32-0002$	>99.9

For other "Chemical inventory listing", please refer to section 15.

SECTION 4. First aid measures

4.1. Description of first aid measures

Skin contact

No treatment necessary because Etibor-48 does not cause irritation to intact skin.

Eye contact

Use eye wash fountain or fresh water to cleanse eye. If irritation persists for more than 30 minutes, seek medical attention.

Inhalation

If symptoms such as nose or throat irritation are observed, remove to fresh air. Etibor-48.

Ingestion

If large amounts are swallowed (i.e. more than one teaspoon), contact a doctor or toxicity centre immediately.

4.2. Most important symptoms and effects, both acute and delayed

N.A.

4.3. Indication of any immediate medical attention and special treatment needed

Observation only is required for adult ingestion of less than 7 grams of Etibor-48. For ingestion in excess of 7 grams, maintain adequate kidney function and force fluids. Gastric lavage is recommended for symptomatic patients only. Haemodialysis should be reserved for massive acute ingestion or patients with renal failure. Boron analyses of urine or blood are only useful for documenting exposure and should not be used to evaluate severity of poisoning or to guide treatment [5] (see SECTION 11).

SECTION 5. Fire-fighting measures

5.1. Extinguishing media

Any appropriate fire extinguishing media may be used on nearby fires.

5.2. Special hazards arising from the substance

Etibor-48 is not flammable, combustible or explosive. The product is itself a flame retardant.

5.3. Advice for firefighters

N.A.

SECTION 6. Aecidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Avoid dust formation. In case of exposure to high level of airborne dust, wear a personal respirator in compliance with national legislation.

6.2. Environmental precautions

Etibor-48 is a water-soluble white product that may, at high concentrations cause damage to trees or vegetation by root absorption (see SECTION 12).

6.3. Methods and material for containment and cleaning up

Land spill

Vacuum, shovel or sweep up Etibor-48 and place in containers for disposal in accordance with applicable local regulations. Avoid contamination of water bodies during clean up and disposal. No personal protective equipment is needed to clean up land spills.

Spillage into water

Where possible, remove any intact containers from the water. Advise local water authority that none of the affected water should be used for irrigation or for the abstraction of potable water until natural dilution returns the boron value to its normal environmental background level (see SECTIONS 12, 13 and 15).

6.4. Reference to other sections

See Sections 8 and 13 for further information.

SECTION 7. Handling and Storage

7.1. Precautions for safe handling

To maintain package integrity and to minimise caking of the product, bags should be handled on a first-in first-out basis. Good housekeeping procedures should be followed to minimise dust generation and accumulation. Your supplier can advise you on safe handling, please contact the supplier.

7.2. Conditions for safe storage, including any incompatibilities

No special handling precautions are required, but dry, indoor storage is recommended. No specific requirements. Provide appropriate ventilation and store bags such as to prevent any accidental damage. The product should be kept away from strong reducing agents.

7.3. Specific end use(s)

See exposure scenario in Annex to the SDS.

SECTION 8. Exposire controls / Pcrsonal protection

8.1. Control parameters

Occupational Exposure Limit Values

Substance:	Disodium tetraborate pentahydrate			
CAS N ${ }^{\circ}$	$\mathbf{1 2 1 7 9 - 0 4 - 3}$			
	Limit value-Eight hours		Limit value - Short term	
	ppm	$\mathrm{mg} / \mathrm{m}^{3}$	ppm	$\mathrm{mg} / \mathrm{m}^{3}$
Belgium		2		6
Denmark		1		2
France		1		
Germany (DFG)		5 inhalable aerosol (1)		5 inhalable aerosol (1)(2)
Ireland		1		
Spain		2		
Switzerland		1 inhalable aerosol		1 inhalable aerosol
United Kingdom		1		

Source: IFA Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung
Remarks
Germany (DFG): (1) calculated as boron: $0.75 \mathrm{mg} / \mathrm{m}^{3}$ (2) 15 minutes average value
Occupational exposure limits for dust (total and respirable) are treated by OSHA, Cal OSHA and ACGIH as
"Particulate Not Otherwise Classified" or "Nuisance Dust"

ACGIH/TLV	$: 10 \mathrm{mg} / \mathrm{m}^{3}$
Cal OSHA/PEL	$: 10 \mathrm{mg} / \mathrm{m}^{3}$
OSHA/PEL (total dust)	$: 15 \mathrm{mg} / \mathrm{m}^{3}$
OSHA/PEL (respirable dust)	$: 5 \mathrm{mg} / \mathrm{m}^{3}$

DNEL values

Exposure pattern	Type/site of effect	Exposure route	DNEL value
DNELs for workers			
Acute	Local	Inhalation	$17 \mathrm{mg} / \mathrm{m}^{3}$
Long-term	Systemic	Inhalation	$9.8 \mathrm{mg} / \mathrm{m}^{3}$
Long-term	Systemic	Dermal	$32432 \mathrm{mg} /$ day
DNELs for the general public	Systemic	Oral	$1.15 \mathrm{mg} / \mathrm{kg}$ bw/day
Acute	Local	Inhalation	$17 \mathrm{mg} / \mathrm{m}^{3}$
Long-term	Systemic	Dermal (external)	$231.8 \mathrm{mg} / \mathrm{kg}$ bw/day
Long-term	Systemic	Dermal (systemic)	$1.15 \mathrm{mg} / \mathrm{kg}$ bw/day
Long-term	Systemic	Inhalation	$4.93 \mathrm{mg} / \mathrm{m}^{3}$
Long-term	Systemic	Oral	$1.15 \mathrm{mg} / \mathrm{kg} \mathrm{bw} /$ day
Long-term	Local	Inhalation	$17 \mathrm{mg} / \mathrm{m}^{3}$

Source: Chemical Safety Report of disodium tetraborate, anhydrous

PNEC values

PNEC add, freshwater, marlne water $=1.35 \mathrm{mg} \mathrm{B} / \mathrm{L}$
PNEC add aqua Intermittent $=9.1 \mathrm{mg} \mathrm{B} / \mathrm{L}$
PNEC add Ireshwater sediment, marlne water sedment $=1.8 \mathrm{mg}^{\mathrm{B}} / \mathrm{kg}$ sediment dry weight
PNEC soll $=5.4 \mathrm{mg} \mathrm{B} / \mathrm{kg}$ soil dry weight
PNEC add, $_{\text {STP }}=1.75 \mathrm{mg}$ B/L
Source: Chemical Safety Report of disodium tetraborate, anhydrous

8.2. Exposure controls

8.2.1. Appropriate engineering controls

Maintain air concentrations below occupational exposure standards.
Use local exhaust ventilation to keep airborne concentrations of Etibor-48 dust below permissible exposure levels. Wash hands before breaks and at the end of the workday. Remove and wash soiled clothing.

8.2.2. Individual protection measures, such as personal protective equipment

Individual protection measures should be preferred taking into account the Council Directive 89/966/EEC and the appropriate CEN standard.

Respiratory protection

In case of prolonged exposure to dust wear a personal respirator in compliance with national/international legislation (CEN standard).

Eyes and hands protection

Goggles and gloves are not required for normal industrial exposures, but may be warranted if environment is excessively dusty.

8.2.3. Environmental exposure controls

No special requirement.

SLCTION 9. Physical and chemical propertics

9.1. Information on basic physical and chemical properties

Appearance	: White solid, granular/powder
Odour	: Odourless
Odour threshold	: N.A.
pH@20 ${ }^{\circ} \mathrm{C}$: 9.2 (1\% solution)
Melting point/freezing point	: $741{ }^{\circ} \mathrm{C}$
Initial boiling point and boiling range	: $1575{ }^{\circ} \mathrm{C}$
Flash point	: Non flammable
Evaporation rate	: N.A.
Flammability (solid, gas)	: N.A.
Upper/lower flammability or explosive limits	: N.A.
Vapour pressure	: Negligible@ $20^{\circ} \mathrm{C}$
Vapour density	:N.A.
Relative density	: N.A.
Solubility in water	: 3.7\%@20 ${ }^{\circ} \mathrm{C}$; $51.2 \% @ 100^{\circ} \mathrm{C}$
Partition coefficient: n-octanol/water	: N.A.
Auto-ignition temperature	:N.A.
Decomposition temperature	: $\mathrm{H}_{2} \mathrm{O}$ @ $120^{\circ} \mathrm{C}$
Viscosity	: N.A.
Explosive properties	: Non explosive
Oxidising properties	: N.A.
9.2. Other information	
Molecular weight	: 291.35
Specific gravity	: $1.81 @ 20^{\circ} \mathrm{C}$

SEC TION 10. Stalility and reactivity

10.1. Reactivity

Etibor-48 is a stable product.

10.2. Chemical stability

Etibor-48 is a stable product, but when heated it losses water, eventually forming anhydrous borax $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\right)$.

10.3. Possibility of hazardous reactions

Reaction with strong reducing agents such as metal hydrides, acetic anhydride or alkali metals will generate hydrogen gas which could create an explosive hazard.

10.4. Conditions to avoid

Avoid contact with strong reducing agents.

10.5. Incompatible materials

Avoid contact with strong reducing agents such as metal hydrides, acetic anhydride or alkali metals.
10.6. Hazardous decomposition products
N.A.

SECTION 11. Toxicological information

11.1. Information on toxicological effect

11.1.1. Substances

Acute toxicity
Low acute oral toxicity; LD50 in rats $>2,500 \mathrm{mg} / \mathrm{kg}$ of body weight (Test material: Disodium tetraborate anhydrous) [6].

Skin corrosion / irritation

Low acute dermal toxicity; LD50 in rabbits is greater than $2,000 \mathrm{mg} / \mathrm{kg}$ of body weight [7]. Borax pentahydrate is poorly absorbed through intact skin. Non-irritant.

Serious eye damage/ irritation

Borax pentahydrate is a serious eye irritant.

Respiratory or skin sensitization

Disodium tetraborate pentahydrate has no respiratory or skin sensitization.

Germcell mutagenicity

Borax pentahydrate is not mutagenic.

Carcinogenicity

Borax pentahydrate is not carcinegenic.

Reproductive toxicity

Animal feeding studies in rat, mouse and dog, at high doses, have demonstrated effects on fertility and testes [1]. Studies in rat, mouse and rabbit, at high doses, demonstrate developmental effects on the foetus including foetal weight loss and minor skeletal variations. The doses administered were many times in excess of those which humans would normally be exposed to [8, 9]. While boron has been shown to adversely affect male reproduction in laboratory animals, there is no clear evidence of male reproductive effects attributable to boron in studies of highly exposed workers. Human epidemiological studies show no increase in pulmonary disease in occupational populations with chronic exposures to sodium borate dust. An epidemiology study under the conditions of normal occupational exposure to borate dusts indicated no effect on fertility [2]. A study conducted in Turkey with boron exposed mine workers showed that mean blood concentrations of the high exposure group is ~ 6 times and ~ 9 times lower than those of the highest no effect level of boron in blood with regard to developmental and reprotoxic effects (respectively) in rats. With those findings, no unfavourable effects of boron exposure on reproductive indicators are observed in humans [3, 4].

STOT-single exposure

N.A.

STOT-repeated exposure
N.A.

Aspiration hazard

Borax pentahydrate has no aspiration hazard.

SECTION 12. Ecological information

12.1. Toxicity

Boron occurs naturally in sea water at an average concentration of $5 \mathrm{mg} \mathrm{B} / \mathrm{L}$ and fresh water at $1 \mathrm{mg} B / \mathrm{L}$ or less. In dilute aqueous solutions the predominant boron species present is undissociated boric acid. To convert disodium tetraborate pentahydrate into equivalent boron (B) content, multiply by 0.1484 .

Phytotoxicity

Boron is an essential micronutrient for healthy growth of plants, however, it can be harmful to boron sensitive plants in higher quantities. Care should be taken to minimise the amount of borate product released to the environment.

Algal toxicity

Green algae, Pseudokirchneriella subcapitata
$72-\mathrm{hr} \mathrm{EC}_{50}$-biomass $=40 \mathrm{mg} \mathrm{B} / \mathrm{L}$ or 270 mg disodium tetraborate pentahydrate/L [10]

Invertebrate toxicity

Daphnia, Daphnids, Daphnia magna
$48-\mathrm{hr} \mathrm{LC}_{50}=133 \mathrm{mg} \mathrm{B} / \mathrm{L}$ or 896 mg disodium tetraborate pentahydrate/L [11]

Fish toxicity

Fish, Fathered minnow, Pimephales promelas
$96-\mathrm{hr} \mathrm{LC}_{50}=79.7 \mathrm{mg} \mathrm{B} / \mathrm{L}$ or 537 mg disodium tetraborate pentahydrate $/ \mathrm{L}$ [12]

12.2. Persistence and degradability

Boron is naturally occurring and ubiquitous in the environment. Disodium tetraborate pentahydrate decomposes in the environment to natural borate.

12.3 Bioaccumulative potential

Not bioccumulative.

12.4. Mobility in soil

The product is soluble in water and is leachable through normal soil.

12.5. Results of PBT and vPvB assessment

N.A.

12.6. Other adverse effects

No data available.

SECTION 13. Disposal considerations

13.1. Waste treatment methods

Small quantities of Etibor-48 can usually be disposed of at landfill sites. No special disposal treatment is required, but local authorities should be consulted about any specific local requirements. Tonnage quantities of product are not recommended to be sent to landfills. Such product should, if possible, be used for an appropriate application.

SECTION 14. Transport information

Borax pentahydrate has no UN Number, and is not regulated under international rail, road, water or air transport regulations.

14.1. UN number:	: N.A.
14.2. UN proper shipping name:	: N.A.
14.3. Transport of hazard classes:	: N.A.
14.4. Packing group:	: N.A.
14.5. Environmental hazards:	: N.A.
14.6. Special precautions for user:	: N.A.
14.7. Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code : N.A.	

SECTION 15. Regulatorv information

15.1. Safety, health and environmental regulations / legislation specific for the substance

It should be noted that borates are safe under conditions of normal handling and use, besides, they are essential nutrients to plants, and research shows that they play a beneficial role in human health. CLP classification has been solely based on animal tests where animals were exposed to high doses of boric acid over long periods of time. These doses were many times higher than humans are exposed to under conditions of normal handling and use. Consequently, a precautionary decision was taken by the European Commission. Although we will comply with the body of legislation triggered by that decision, we are in process of all possible legal actions.

Clean Air Act (Montreal Protocol)

Borax pentahydrate was not manufactured with and does not contain any Class I or Class II ozone depleting substances.

Chemical inventory listing

- EINECS : 215-540-4
- Japan ENCS : MITI 1-69
- China IESCS : 12179-04-3
- New Zealand NZIoC : 12179-04-3
- Philippines PICCS : 12179-04-3

Ensure all national/local regulations are observed.

EU Reach Regulation

Disodium Tetraborates are listed in the Candidate List of Substances of Very High Concern "SVHC" for eventual inclusion in Annex XIV to REACH Regulation 1907/2006 ("Authorisation List"). (18.06.2010-ED/30/2010).
Disodium tetraborates are listed in the Annex XVII of REACH Regulation 1907/2006 (EU No.109/2012) and their use in consumer products above specific concentration limits are restricted. Note that this restriction is only specific to consumer products and do not cover their industrial and/or professional applications. Disodium tetraborates can be used in consumer products below specific concentration limits (which is $\mathrm{C} \geq 6.5 \%$ for Borax Pentahydrate).

15.2. Chemical safety assessment

Chemical Safety Assessment of borax pentahydrate (disodium tetraborate pentahydrate) has been carried out under REACH Regulation of the EU.

SECTION 16. Other information

16.1. Mainly changes made to the previous version of this Safety Data Sheet (SDS)

This SDS complies with ISO 11014; the requirements of REACH Title IV and was updated to be in compliance with Annex II of REACH duly amended by Commission Regulation (EU) No 2015/830 of 28 May 2015.

Revision No	Revision date	Revision content
07	February 2016	- This SDS was updated in accordance with the ECHA Guidance on the Compilation of Safety data Sheets, Ver. 3.1 dated November 2015.
08	January 2018	-This SDS was updated in line with "Standardization and Simplification of Bag Printings".

16.2. List of abbreviation and acronyms used in this SDS

$1^{\text {st }}$ ATP	: 1st Adaptation to Technical and scientific Progress
ACGIH	: American Conference of Governmental Industrial Hygienists
Cal OSHA	: The State of California Division of Occupational Safety and Health (DOSH)
CAS ${ }^{\circ}$: Chemical Abstracts Service number
CLP	: Classification Labelling Packaging Regulation: Regulation (EC) N ${ }^{\circ} 1272 / 2008$
CSR	: Chemical Safety Report
DNEL	: Derived No effect Level
EC N ${ }^{\circ}$: EINECS Number: European Inventory of Existing Commercial Substances
ECs0	: Half maximal effective concentration
ENCS	: Japan Inventory of Existing and New Chemical Substances
Eti Maden	: Eti Maden İşletmeleri Genel Müdürlüğü
Eye irrit. Cat. 2	: Substance inducing potential reversible eye irritation
IECSC	: Inventory of Existing Chemical Substances Produced or Imported in China
Index ${ }^{\text {N }}$: Atomic number of the element most characteristic of the properties of the substance
LC50	: Lethal Concentration, 50\%
LD 5_{0}	: Median Lethal Dose
N.A.	: Not Applicable
NZIoC	: New Zealand Inventory of Chemicals
OSHA	: Occupational Safety \& Health Administration
PBT	: Persistent, Bioaccumulative and Toxic substance
PEL	: Permissible Exposure Limits
PICCS	: Philippines Inventory of Chemicals and Chemical Substances
PNEC	: Predicted No Effect Concentration
REACH	: Registration, Evaluation, Authorisation and Restrictions of Chemicals Regulation (EC) N ${ }^{\circ} 1907 / 2006$
Repr. Cat. 1B	: substance presumed human reproductive toxicant
SDS	: Safety Data Sheet
TLV	: Threshold Limit Value
UN	: United Nations
vPvB	: Very Persistent and Very Bioaccumulative

16.3. List of relevant hazard statements and precautionary statements used in this SDS

According to CLP Regulation
Hazard Statement
H360 FD: May damage fertility or the unborn child
H319: Causes serious eye irritation
Precautionary Statements
Prevention
P201: Obtain special instructions before use.
P202: Do not handle until all safety precautions have been read and understood.
P264: Wash eyes thoroughly after handling.
P280: Wear protective gloves/ protective clothing/ eye protection/ face protection.
Response
P308+P313: If exposed or concerned: get medical advice/attention.
P305+P351+P338: IF IN EYES: Rinse cautiously with water for several minutes.
Remove contact lenses, if present and easy to do. Continue rinsing.
P337+P313: If eye irritation persists: Get medical advice/attention.
Storage
P405: Store locked up.
Disposal:
P501: Dispose of contents/container to in accordance with local regulations.

16.4. Key literature references and sources for data

[1] Fail, P.A., George, J.D., Seely, J.C., Grizzle, T.B., \& Heindel, J.J. (1991). Reproductive toxicity of boric acid in Swiss (CD-1) mice: Assessment using the continuous breeding protocol. Fundamental and Applied Toxicology, 17(2), 225-239.
[2] Scialli, A.R., Bonde, J.P., Brüske-Hohlfeld, I., Culver, D.B., Li, Y., \& Sullivan, F.M. (2010). An overview of male reproductive studies of boron with an emphasis on studies of highly exposed Chinese workers. Reproductive Toxicology, 29(1), 10-24.
[3] Duydu, Y., Başaran, A., \& Bolt, H. (2012). Exposure assessment of boron in Bandırma boric acid production plant. Journal of Trace Elements in Medicine and Biology, 26(2-3), 161-164.
[4] Başaran, N., Duydu, Y., \& Bolt, H., (2012). Reproductive toxicity in boron exposed workers in Bandırma, Turkey. Journal of Trace Elements in Medicine and Biology, 26(2-3), 165-167.
[5] Litovitz, T.L., Norman, S.A., \& Veltri, J.C. (1986). Annual Report of the American Association of Poison Control Centers National Data Collection System. The American Journal of Emergency Medicine, 4(5), 427-458.
[6] Denton, S.M. (1996). Acute oral toxicity study in the rat: anhydrous boric acid. Final report. Testing laboratory: Corning Hazleton (Europe) Otley Road, Harrogate, North Yorkshire, UK. Report no.: 1341/71032. Owner Company: Borax Europe Ltd. Report date: 1996-03-06.
[7] Weiner, A.S., Conine, D.L., \& Doyle, R.L. (1982). Acute Dermal Toxicity Screen in Rabbits; Primary Skin Irritation Study in Rabbits of Boric Acid. Testing laboratory: Hill Top Research, Inc. Report no.: 82-0280-21. Owner Company: US Borax Chemical Corporation. Report date: 1982-03-15.
[8] Heindel, J.J., Price, C.J., Field, E.A., Marr, M.C., Myers, C.B., Morrissey, R.E. \& Schwetz, B.A. (1992). Developmental toxicity of boric acid in mice and rats. Fundamental and Applied Toxicology, 18(2), 266277.
[9] Price, C.J., Marr, M.C., Myers, C.B., Heindel, J.J., \& Schwetz, B.A. (1991). Final Report on the Developmental Toxicity of Boric Acid (CAS No 10043-35-3) in New Zealand White Rabbits. National Toxicology Program, National Institute of Environmental Health Sciences. Testing laboratory: National Toxicology Program, National Institute of Environmental Health Sciences (TER 90-003; NTIS Accession No PB92-129550). Report no.: TER 90-003; NTIS Accession No PB92-129550.
[10]Hanstveit, A.O. \& Oldersma, H. (2000). Determination of the effect of Boric acid, Manufacturing grade on the growth of the fresh water green alga Selenastrum capricomutum. Testing laboratory: TNO Nutrition and Food Research Institute. Report no.: V99.157. Owner Company: Borax Europe Limited. Study number: IMW-99-9047-05. Report date: 2000-03-06.
[11]Gersich, F.M. (1984a). Evaluation of a Static Renewal Chronic Toxicity Test Method for Daphnia magna straus using Boric Acid. Environmental Toxicology and Chemistry, 3(1), 89-94.
[12]Soucek, D., Dickinson, A., \& Major, K. (2010). Acute and chronic toxicity of boron to freshwater organisms. Testing laboratory: Illinois Natural History Survey, University of Illinois, Champaign, Illinois. Owner Company: Illinois Natural History Survey, University of Illinois.

For general information on the toxicology of borates see ECETOC Technical Report No. 63 (1995); Patty's Industrial Hygiene and Toxicology, 4th Edition Vol. II, (1994) Chap. 42, 'Boron'.

16.5. Disclaimer of Liability

The information in this SDS was obtained from sources which we believe are reliable. However, the information is provided without any warranty, express or implied, regarding its accuracy, reliability or completeness. The conditions or methods of handling, storage use or disposal of the product are beyond our control and may be beyond our knowledge.

For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of the product. It is the
user's responsibility to satisfy himself as to the suitableness and completeness of such information for his own particular use.
This SDS was prepared and is to be used only for this product. If the product is used as a component in another product, this SDS information may not be applicable.

Safety Data Sheet Prepared by Arzu DEMIS

Certificate Date: 30.09.2015
Certificate Number: 01.58.04

Safety Data Sheet Prepared by Zeynep GÜRTÜRK

Certificate Date: 30.09.2015

Certificate Number: 01.58.07

